Efficient Architectures for Streaming DSP Applications

نویسندگان

  • Gerard J. M. Smit
  • Andre B. J. Kokkeler
  • Pascal T. Wolkotte
  • Marcel D. van de Burgwal
  • Paul M. Heysters
چکیده

In this paper we focus on algorithms and reconfigurable tiled architectures for streaming DSP applications. The tile concept has a number of advantages: (1) depending on the requirements more or less tiles can be switched on/off, (2) the tile structure fits well to future IC process technologies, more tiles will be available in advanced process technologies, but the complexity per tile stays the same, (3) the tile concept is fault tolerant, faulty tiles can be discarded and (4) tiles can be configured in parallel. Because processing and memory is combined in the tiles, tasks can be executed efficiently (locality of reference). There are a number of application domains that can be considered as streaming DSP applications, for example wireless baseband processing (for HiperLAN/2, WiMax, DAB, DRM, and DVB), multimedia processing (e.g. MPEG, MP3 coding/decoding), medical image processing, color image processing, sensor processing (e.g. remote surveillance cameras) and phased array radar systems. In this paper the key characteristics of streaming DSP applications are highlighted, and the characteristics of the processing architectures to efficiently support these types of applications are addressed. Index Terms — Streaming applications, SoC design, NoC design, system design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-Low-Energy DSP Processor Design for Many-Core Parallel Applications

Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...

متن کامل

The Chameleon Architecture for Streaming DSP Applications

We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile pro...

متن کامل

From Streaming Models to FPGA Implementations

Application advances in the signal processing and communications domains are marked by an increasing demand for better performance and faster time to market. This has motivated model-based approaches to design and deploy such applications productively across diverse target platforms. Dataflow models are effective in capturing these applications that are real-time, multi-rate, and streaming in n...

متن کامل

Two Architectures for Parallel Processing of Huge Amounts of Text

This paper presents two alternative NLP architectures to analyze massive amounts of documents, using parallel processing. The two architectures focus on different processing scenarios, namely batch-processing and streaming processing. The batch-processing scenario aims at optimizing the overall throughput of the system, i.e., minimizing the overall time spent on processing all documents. The st...

متن کامل

Fracturable DSP Block for Multi-context Reconfigurable Architectures

Multi-context architectures like NATURE enable low-power applications to leverage fast context switching for improved energy efficiency and lower area footprint. The NATURE architecture incorporates 16-bit reconfigurable DSP blocks for accelerating arithmetic computations, however, their fixed precision prevents efficient re-use in mixed-width arithmetic circuits. This paper presents an improve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006